

Mobile Solutions Architecture Resource Guide 1

MOBILE SOLUTIONS

ARCHITECTURE

RESOURCE GUIDE

Mobile Solutions Architecture Resource Guide 2

Table of Contents
Copyright .. 3

Introduction.. 4

Who is the Salesforce Certified Mobile Strategy Architecture Designer? ..4

Learn Materials ... 5
General Resources ...5
General Overview ..8
Suggested Activities ... 16

BUILD MATERIALS ... 18

Comprehensive Use Case ... 18

Request a Practice Org .. 44

Join the Salesforce Architect Success Group .. 45

Mobile Solutions Architecture Resource Guide 3

Copyright
© Copyright 2000-2017 salesforce.com, inc. All rights reserved. Various trademarks held by

their respective owners.

This document contains proprietary information of salesforce.com, inc., it is provided under

a license agreement containing restrictions on use, duplication and disclosure and is also

protected by copyright law. Permission is granted to customers of salesforce.com, inc. to

use and modify this document for their internal business purposes only. Resale of this

document or its contents is prohibited.

The information in this document is subject to change without notice. Should you find any

problems or errors, please log a case from the Support link on the Salesforce home page.

Salesforce.com, inc. does not warrant that this document is error-free.

Mobile Solutions Architecture Resource Guide 4

Introduction

Who is the Salesforce Certified Mobile Strategy

Architecture Designer?

The candidate looking to obtain the Salesforce Certified Mobile Strategy Architecture

Designer can assess the architecture environment and requirements and designs sound

and scalable mobile solutions on the Force.com platform that meet the mobility

requirements. The candidate has experience communicating solutions and design trade-

offs to business stakeholders.

The experience and skills that the candidate should possess are outlined below:

 Has 5+ years of delivery experience.

 Experience providing guidance on the appropriate choice of platform technology.

 Understands architecture options, design trade-offs, and has the ability to

communicate design choices.

 Able to evaluate business use cases in terms of whether they are a good fit for

mobilization.

 Understands the design trade-offs of architecting a mobile solution: using HTML5,

Native (iOS/android/Windows Mobile), Hybrid solutions, or Salesforce1 Mobile App.

 Understands the capabilities of the Salesforce Mobile SDK.

 Aware of strategies and use cases for wearables and connected devices and the

appropriate architecture patterns.

 Understands how to secure mobile solutions and apps.

Mobile Solutions Architecture Resource Guide 5

Learn Materials

General Resources

Here are some comprehensive general resources that are a good starting place for your self-

paced study.

Salesforce1 Platform: The Mobile Strategy Video Series

Featured analyst, David Mitchell Smith, VP and Gartner Fellow, and Scott Holden, VP

Marketing, salesforce.com, discuss today's top mobile app development challenges for IT.

Native, HTML5, or Hybrid: Understanding Your Mobile Application Development Options

While this article addresses mobile app development in general, it is specifically targeted at

developers looking to create mobile applications that interact with Salesforce.com,

Force.com, or Database.com.

Heroku 101: A Beginner’s Guide To Hosting Apps In The Cloud

Heroku is a service that simplifies the process of getting your finished app to your potential

users—in just a couple of clicks.

Build an iOS App on Heroku in 10 Minutes

This video explains how to build a simple mobile app and deploy it in Heroku.

The Heroku Mobile App Template

This app provides a full-stack starting point for creating new hybrid mobile apps and

deploying them to Heroku.

https://www.salesforce.com/form/offer/gartner-mobile-series.jsp
https://www.salesforce.com/form/offer/gartner-mobile-series.jsp
https://developer.salesforce.com/page/Native,_HTML5,_or_Hybrid:_Understanding_Your_Mobile_Application_Development_Options
https://developer.salesforce.com/page/Native,_HTML5,_or_Hybrid:_Understanding_Your_Mobile_Application_Development_Options
http://readwrite.com/2014/09/23/heroku-for-beginners-app-hosting-101/
http://readwrite.com/2014/09/23/heroku-for-beginners-app-hosting-101/
https://vimeo.com/53831431
https://vimeo.com/53831431
https://engineering.heroku.com/blogs/2014-10-02-heroku-mobile-app-template/
https://engineering.heroku.com/blogs/2014-10-02-heroku-mobile-app-template/

Mobile Solutions Architecture Resource Guide 6

Multi-Device Strategy

With the worldwide proliferation of mobile devices, HTML5 mobile applications must

support a variety of platforms, form factors, and device capabilities. Developers who write

device-independent mobile apps in Visualforce face these key design questions:

 Which devices and form factors should my app support?

 How does my app detect various types of devices?

 How should I design a Force.com application to best support multiple device types?

Power Up Your Mobile Strategy: Apps for Admins

In this series, we’re digging into some of the key challenges admins face and the

AppExchange apps, free and paid, that have made some of my customers more successful.

From Mobile Strategy to Reality

In this session we’ll explore how financial services companies are working with Salesforce to

unlock the value held captive in legacy systems and to enable them to connect to their

customers in new and innovative ways.

The following videos illustrate how the Salesforce1 platform can produce innovative

solutions to create captivating and scalable mobile customer experiences:

The Financial Times

Design Within Reach

Herman Miller

Brown-Forman

https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/html5_cross_device.htm
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/html5_cross_device.htm
https://www.salesforce.com/blog/2015/03/power-up-your-mobile-strategy-apps-for-admins.html
https://www.salesforce.com/blog/2015/03/power-up-your-mobile-strategy-apps-for-admins.html
http://www.slideshare.net/Salesforce/mobile-strategy-32970511
http://www.slideshare.net/Salesforce/mobile-strategy-32970511
https://www.youtube.com/watch?v=8Jyw-hKmgdM
https://www.youtube.com/watch?v=8Jyw-hKmgdM
https://www.youtube.com/watch?v=L4mYqEyZ_7U
https://www.youtube.com/watch?v=L4mYqEyZ_7U
https://www.youtube.com/watch?v=d_7y2Nbz6sI
https://www.youtube.com/watch?v=d_7y2Nbz6sI
https://www.youtube.com/watch?v=Danf-ARUFlM
https://www.youtube.com/watch?v=Danf-ARUFlM

Mobile Solutions Architecture Resource Guide 7

American Express

Manufacturing - Industry Product Demo

Please register in the Salesforce Success Community and join our Architect

Success group here.

https://www.youtube.com/watch?v=c3D75e5DPug
https://www.youtube.com/watch?v=c3D75e5DPug
https://www.youtube.com/watch?v=P-f8pw7ehfQ
https://success.salesforce.com/loginswitcher?startURL=%2F_ui%2Fcore%2Fchatter%2Fgroups%2FGroupProfilePage%3Fg%3D0F930000000blKv

Mobile Solutions Architecture Resource Guide 8

General Overview

The following pages will introduce you to various focuses within the Mobile Strategy

Architecture domain. You will be introduced relevant objectives that require a very specific

set of skills and the curated learning materials that will help you to achieve them.

 Mobile Strategy and Design

 Mobile Security

Each learning resource has a related skill level: Beginner, Intermediate, or Advanced.

Resources marked Core cover essential concepts, while those marked Recommended

provide additional materials for further edification.

Mobile Solutions Architecture Resource Guide 9

1. Mobile Strategy and Design

Mobile Strategy and Design looks at how to create an optimal mobile solution taking into

account a specific set of customer requirements, the system landscape, and the customer’s

capabilities. The key to success here is a deep understanding of the Mobility options on the

Salesforce platform, the applicability of each option to a specific problem, and the

consequences of adopting a particular architecture.

1.1 Describe the design considerations, trade-offs, and risks for

mobile solutions and recommend the appropriate mobile

platform: HTML5, Native (iOS/android/Windows Mobile), Hybrid

solutions, or Salesforce1 Mobile App.

Native, HTML5, or Hybrid: Understanding Your Mobile Application Development Options

There are many factors that play a part in your mobile strategy. In the end, it’s not just a

question of what your app will do, but how you’ll get it there.

Tags: Beginner, Core

Trailhead : HTML5 and Hybrid

Build Cordova-based hybrid mobile apps using HTML5 and Salesforce Mobile SDK.

Tags: Beginner, Core

Bring Your Own Device (BYOD)

Bring your own device (BYOD) refers to the policy of permitting employees to bring

personally owned mobile devices (laptops, tablets, and smart phones) to their workplace,

and to use those devices to access privileged company information and applications.

Tags: Intermediate, Core

https://developer.salesforce.com/page/Native,_HTML5,_or_Hybrid:_Understanding_Your_Mobile_Application_Development_Options
https://developer.salesforce.com/page/Native,_HTML5,_or_Hybrid:_Understanding_Your_Mobile_Application_Development_Options
https://trailhead.salesforce.com/modules/mobile_sdk_hybrid
https://trailhead.salesforce.com/modules/mobile_sdk_hybrid
https://en.wikipedia.org/wiki/Bring_your_own_device
https://en.wikipedia.org/wiki/Bring_your_own_device

Mobile Solutions Architecture Resource Guide 10

Consumerization, BYOD and MDM: What you need to know

Consumerization and BYOD is reshaping the way IT is purchased, managed, delivered, and

secured. We delve into what it means, the key products involved, how to handle it, and

where it's going in the future.

Tags: Intermediate, Core

Trailhead : Native iOS

Develop native iOS apps using Salesforce Mobile SDK.

Tags: Advanced, Recommended

Trailhead : Native Android

Develop native Android apps using Salesforce Mobile SDK.

Tags: Advanced, Recommended

1.2 Articulate the key capabilities of the Mobile SDK, including

authentication/authorization [including SSO], offline storage,

use cases, and synch capabilities.

Trailhead : Mobile SDK Basics

Learn about the technologies that power mobile development with Salesforce Mobile SDK.

Tags: Beginner, Core

Trailhead : Using CSS and JavaScript Mobile Frameworks

After completing this unit, you’ll be able to list at least three CSS frameworks you can use to

style your Visualforce pages and describe two technical challenges frameworks can simplify

in your Salesforce1 development efforts.

Tags: Beginner, Core

http://www.zdnet.com/article/consumerization-byod-and-mdm-what-you-need-to-know/
http://www.zdnet.com/article/consumerization-byod-and-mdm-what-you-need-to-know/
https://trailhead.salesforce.com/modules/mobile_sdk_native_ios
https://trailhead.salesforce.com/modules/mobile_sdk_native_ios
https://trailhead.salesforce.com/modules/mobile_sdk_native_android
https://trailhead.salesforce.com/modules/mobile_sdk_native_android
https://trailhead.salesforce.com/modules/mobile_sdk_introduction
https://trailhead.salesforce.com/modules/mobile_sdk_introduction
https://trailhead.salesforce.com/en/visualforce_mobile_salesforce1/visualforce_mobile_salesforce1_mobile_frameworks
https://trailhead.salesforce.com/en/visualforce_mobile_salesforce1/visualforce_mobile_salesforce1_mobile_frameworks

Mobile Solutions Architecture Resource Guide 11

Developing Offline Apps with Salesforce Mobile Services

This post explores how to use the Salesforce Mobile SDK SmartStore to store encrypted

data in a NoSQL-style database on both iOS and Android devices.

Tags: Beginner, Core

New Mobile Services for The Micro-Moment

This rise of the micro-moment, the resurgence of JavaScript, and the expectation of

beautifully designed, engaging apps has changed what users expect from their mobile app

experience. Enterprise developers need new tools to deliver these apps for their customers,

employees, and partners.

Tags: Beginner, Core

Salesforce Mobile SDK 3.1: Unified App Architecture Brings Unparalleled Flexibility

We’ve unified the app architecture so that apps built with the latest SDK – hybrid or native

– now have access to the same core set of functionality, regardless of their target platform.

Tags: Intermediate, Recommended

Building Beautiful Apps with the Salesforce Mobile SDK

Join us to see live tutorials that demonstrate how to get started with custom app

development, add advanced features for secure offline storage & data sync, push

notifications, and harness the power of native platform functionality through Cordova.

Tags: Intermediate, Recommended

Using SmartSync in Native Apps

The native SmartSync library provides native iOS and Android APIs that simplify the

development of offline-ready apps. A subset of this native functionality is also available to

hybrid apps through a Cordova plug-in.

Tags: Advanced, Recommended

https://developer.salesforce.com/page/Developing_Offline_Apps_with_SmartStore
https://developer.salesforce.com/page/Developing_Offline_Apps_with_SmartStore
https://developer.salesforce.com/blogs/developer-relations/2013/07/new-salesforce-mobile-services-for-mobile-micro-moments.html
https://developer.salesforce.com/blogs/developer-relations/2013/07/new-salesforce-mobile-services-for-mobile-micro-moments.html
https://developer.salesforce.com/blogs/engineering/2015/02/salesforce-mobile-sdk-3-1-unified-app-architecture-brings-unparalleled-flexibility.html
https://developer.salesforce.com/blogs/engineering/2015/02/salesforce-mobile-sdk-3-1-unified-app-architecture-brings-unparalleled-flexibility.html
https://www.youtube.com/watch?feature=player_embedded&v=aUpMr2kQITM
https://www.youtube.com/watch?feature=player_embedded&v=aUpMr2kQITM
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/entity_framework_native_using.htm
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/entity_framework_native_using.htm

Mobile Solutions Architecture Resource Guide 12

Developing Offline Mobile Apps with Salesforce Mobile SDK SmartStore

Join us to learn best practices for coding for offline requirements with the Salesforce

Mobile SDK. We'll develop a simple app using SmartStore offline storage, highlighting the

SmartSQL and SmartSync features.

Tags: Advanced, Recommended

1.3 Incorporate all aspects of Salesforce1 declarative design to build

a scenario-based solution.

Customize Your Login Page Branding

Customize the look and feel of your login page by adding a background color, logo, and

right-side content. Customizing your login page helps users recognize your page by tying it

to your company’s branding.

Tags: Basic, Core

Salesforce1 Mobile Workbook

This workbook shows you how to use, configure, and develop the Salesforce1 mobile app

in a series of tutorials. Initially you create a very simple app to track your learning progress,

which is enough to show you the basics. If you following along to the end of this tutorial,

you’ll also install a Warehouse app that will help you learn more sophisticated examples

with code. Focus on Tutorials 3 through 5 of this workbook.

Tags: Basic, Core

Salesforce1 Mobile App Developer Guide

Salesforce1 is a mobile app development platform for everyone. It gives ISVs, developers,

administrators, and every user the freedom to innovate. Focus on Chapters 1 through 8 of

this guide.

Tags: Intermediate, Core

1.4 Recommend a mobile strategy taking into consideration current

Apex, Lightning Component and Visualforce assets and

extension to Salesforce1 declarative capabilities.

https://www.youtube.com/watch?v=Ep4HQjyDFcE
https://www.youtube.com/watch?v=Ep4HQjyDFcE
https://help.salesforce.com/apex/HTViewHelpDoc?id=domain_name_login_branding.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=domain_name_login_branding.htm&language=en_US
http://res.cloudinary.com/hy4kyit2a/image/upload/s1_mobile_woorkbook_v3-21.pdf
http://res.cloudinary.com/hy4kyit2a/image/upload/s1_mobile_woorkbook_v3-21.pdf
https://resources.docs.salesforce.com/sfdc/pdf/salesforce1_guide.pdf
https://resources.docs.salesforce.com/sfdc/pdf/salesforce1_guide.pdf

Mobile Solutions Architecture Resource Guide 13

Salesforce Mobile Push Notifications Implementation Guide

Mobile push notifications allow Force.com mobile application developers to easily push

notifications to their users’ mobile devices when business events occur in the users’

organizations. Focus on Chapters 1 and 2 of this guide.

Tags: Intermediate, Core

Adding Push Notification to Salesforce Mobile Apps

Join us to learn how to integrate push notifications in your Salesforce Mobile Apps using a

custom implementation, the Salesforce Mobile SDK, or the ExactTarget Mobile Push

service. Focus primarily on the concepts presented in the first 15 minutes of the video.

Tags: Intermediate, Core

Lightning Components Developer’s Guide

This guide will provide you with an in-depth resource to help you create your own stand-

alone Lightning apps, as well as custom Lightning components that can be used in the

Salesforce1 mobile app. Focus on Chapters 1 and 2 of this guide. The other chapters are

just recommended.

Tags: Intermediate, Core

Salesforce1 Mobile App Developer Guide

Salesforce1 is a mobile app development platform for everyone. It gives ISVs, developers,

administrators, and every user the freedom to innovate. Focus on Chapters 9 through 16

of this guide.

Tags: Intermediate, Recommended

1.5 Identify use cases where a connected device and/or wearables

would be an appropriate component in a solution and the

corresponding Force.com platform architecture.

https://help.salesforce.com/help/pdfs/en/salesforce_mobile_push_notifications_implementation.pdf
https://help.salesforce.com/help/pdfs/en/salesforce_mobile_push_notifications_implementation.pdf
https://www.youtube.com/watch?v=b1GUvEjbdns
https://www.youtube.com/watch?v=b1GUvEjbdns
https://resources.docs.salesforce.com/sfdc/pdf/lightning.pdf
https://resources.docs.salesforce.com/sfdc/pdf/lightning.pdf
https://resources.docs.salesforce.com/sfdc/pdf/salesforce1_guide.pdf
https://resources.docs.salesforce.com/sfdc/pdf/salesforce1_guide.pdf

Mobile Solutions Architecture Resource Guide 14

5 Ways the Internet of Things Will Make Marketing Smarter

The Internet of Things is the interconnectivity between things using wireless

communication technology to connect objects, locations, or people to the internet, thus

allowing for the direct transmission of and seamless sharing of data.

Tags: Beginner, Core

Salesforce Wear Developer Pack

The Salesforce Wear Developer Pack is a collection of open-source starter apps that let you

quickly design and build wearable apps that connect to the Salesforce1 Platform.

Understand the concepts and options rather than the coding detail.

Tags: Intermediate, Core

RESOURCE: See “Suggested Activities,” later in this document.

https://www.salesforce.com/blog/2014/03/internet-of-things-marketing-impact.html
https://www.salesforce.com/blog/2014/03/internet-of-things-marketing-impact.html
https://developer.salesforce.com/wear
https://developer.salesforce.com/wear

Mobile Solutions Architecture Resource Guide 15

2. Mobile Security

Securing data in mobile devices is a big concern for most organizations. The nature of the

handheld device means that it’s more susceptible to being lost or stolen compared to

traditional computing devices. A good understanding of the mobile security risks and the

solution options available to address each one is key to a successful solution. Salesforce

platform, Salesforce1 Mobile app, and the Salesforce Mobile SDK all provide various

options to secure customer data.

2.1 Identify how to secure a mobile application and its data,

including offline data encryption.

Salesforce1 Mobile Security Guide

This document describes the Salesforce1 mobile application (Android and iOS

downloadable application, and the mobile browser application), and addresses security

concerns an enterprise may have when evaluating Salesforce1 for their organization.

Tags: Advanced, Core

Trailhead : Offline Management

Manage offline access for Android and iOS apps using Salesforce Mobile SDK. Understand

the basic SmartStore and SmartSync concepts presented in their respective learning

objectives.

Tags: Advanced, Core

RESOURCE: See the following section, “Suggested Activities.”

https://resources.docs.salesforce.com/sfdc/pdf/salesforce1_mobile_security.pdf
https://resources.docs.salesforce.com/sfdc/pdf/salesforce1_mobile_security.pdf
https://developer.salesforce.com/trailhead/module/mobile_sdk_offline

Mobile Solutions Architecture Resource Guide 16

Suggested Activities

To practice these activities, you may do one of the following:

 Request a free Practice Org by creating a case here.
□ Question Type: Architect Support

□ Question Detail: Request Practice Org

You should receive login information in about two business days.

 Use your existing Developer org.

 Sign up for a free Developer Edition account here.

1. Install the Expense Tracker App

To work with Lightning apps and components, follow these prerequisites:

 Create a Developer Edition organization

 Register a Namespace Prefix

 Enable Lightning Components in Salesforce1

A package is a bundle of components that you can install in your org. This packaged app is

useful if you want to learn about the Lightning app.

NOTE: Install the package in an org that doesn’t have any of the objects with

the same API name as the quick start objects.

To install the Expense Tracker app:

1. Click the installation URL link.

2. Log in to your organization by entering your username and password.

3. On the Package Installation Details page, click Continue.

4. Click Next, and on the Security Level page click Next.

5. Click Install.

6. Click Deploy Now and then Deploy.

http://certification.salesforce.com/open-a-case
https://developer.salesforce.com/signup
https://login.salesforce.com/packaging/installPackage.apexp?p0=04to00000003onL

Mobile Solutions Architecture Resource Guide 17

When the installation completes, you can select the Expenses tab on the user interface to

add new expense records.

You’ll also see the Expenses menu item on the Salesforce1 navigation menu. If you don’t

see the menu item in Salesforce1, add it by going to Mobile Administration > Mobile

Navigation.

Next, you can modify the code in the Developer Console or explore the standalone app

at https://<mySalesforceInstance>.lightning.force.com/c/expenseTracker.app,

where <mySalesforceInstance> is the name of the instance hosting your org; for example,

na1.

2. Create an Expense Object

Create an expense object to store your expense records and data for the app.

1 From Setup, click Create > Objects.

2 Click New Custom Object.

3 Fill in the custom object definition.
□ • For the Label, enter Expense.

□ • For the Plural Label, enter Expenses.

4 Click Save to finish creating your new object. The Expense detail page is displayed.

NOTE: If you’re using a namespace prefix, you might see

namespace__Expense__c instead of Expense__c.

5 On the Expense detail page, add the following custom fields.

Field Type Field Label

Number (16, 2) Amount

Text (20) Client

Date/Time Date

Checkbox Reimbursed?

To continue with this activity, please continue the steps found on page 11 of the Lightning

Components Developer’s Guide.

https://resources.docs.salesforce.com/sfdc/pdf/lightning.pdf
https://resources.docs.salesforce.com/sfdc/pdf/lightning.pdf

Mobile Solutions Architecture Resource Guide 18

BUILD MATERIALS

Comprehensive Use Case

Universal Waters (UW) is a utility company that provides water distribution and last mile

support to both commercial and residential customers. Because they are a utility, they are

required to provide an excellent level of service or they run the risk of losing their monopoly

in many of their covered regions: 4 northeastern states. Up until recently, they provided

support via phone, email, and a legacy “brochureware” website, but they were not able to

scale their operations.

Recently they embarked on a Service Cloud implementation to increase the level of support

they provide to their customers. Their first implementation phase was geared toward

ensuring their internal reps could manage the inbound emails and calls. They used the

service console to provide a great desktop experience for their agents. They are now in the

process of designing the second phase.

Detailed Requirements

Self-Service

 Customers will be able to request a service call if something is wrong.

 There are a number of different reasons that a service request can be created.

 Customers can upload a picture associated with the request.

 The customer can share their location with the request.

 A customer can receive updates on their service request.

 App Distribution:
□ Users should be able to access the application on the desktop as well as on a mobile device.

□ They insist that they reach as close to 100% of the smartphone market as possible.

□ They also want to ensure that users will have a solid experience on a tablet device.

□ While smartwatches are not ubiquitous, they are interested in supporting these emerging

platforms.

□ They want to distribute the apps on at least the top two (2) major app stores.

Sales Team

 There’s a small group of Sales Reps who offer water-related products and services to

their customers.

 These users should be able to track and update the opportunities on the road

without having to go back to the office after every meeting or presentation.

 Their Sales Manager has also asked for instant access to reports to track the progress

of her team in order to be able to identify reps who might need her support to close

a deal or to push others who have not been actively pursuing new deals.

 The Sales team members will all be given iPads.

Mobile Solutions Architecture Resource Guide 19

 They will also need to see billing history as well as be able to create and submit new

contracts on the road. There is an existing multi-step Visualforce "wizard" ending in a

synchronous web service call to the ERP system on contract submission.

 The Sales Reps sometimes have to travel to remote areas where there is little to no

cellular coverage, but they will still need access to data and content for discussions

with the customer.

Service Agents

 Service agents handle cases across many channels: email, phone, etc.

 There are ~100 service agents located in 2 service centers.

 The UW agents will spend most of their time at their desk in the office supporting

service requests.

 Agents should have the ability to support service requests from wherever they are.

 UW is evaluating mobile providers and is looking for the ability to offer BYOD for

their employees, while providing a container to protect company intellectual

property.

 The mobile security team insists that they can wipe all corporate data if an employee

is terminated or a phone is lost.

 If appropriate, Agent Dispatchers will assign service requests to Field Service Agents

depending on proximity to the account and availability.

Service Providers

 Service Providers are independent contractors that respond to the service requests

they are given.

 They often go to the commercial or residential customer and diagnose and fix the

problems related to the request.

 Service Providers (contractors) will need to be able to respond to service requests.

 Service Providers are not employees and should only see service requests that are

assigned to them.

 Service Providers will need to be able to take a picture of a meter, annotate it, and

attach it to the case to prove that the service work has been completed.

 Service Providers will need to “sign” a case with TouchID before submitting.

 Service Providers will all be given iPads.

Other Considerations

 UW is looking for a rollout strategy for each of its deployment audiences. UW has

expressed interest in evaluating an MDM platform.

 UW is looking for a recommendation for how to contract with development teams;

i.e., what skill sets are required.

 UW is looking to minimize maintenance where possible, but is willing to concede to

meet the core requirements.

 Part of this effort will be to refresh the public-facing website and to provide a

pleasant UX for all users on all platforms.

Mobile Solutions Architecture Resource Guide 20

 UW wants to enable SSO to facilitate good user adoption. They are planning to

manage this through a SAML-based authentication. They utilize AD for internal users

and LDAP for customers. Contractors are considered internal.

NOTE: Please note that the build materials for this domain should be

completed in order, as each one builds upon the previous one.

Mobile Solutions Architecture Resource Guide 21

1. Mobile Architectural Design

1.1 Describe the design considerations, trade-offs, and risks for mobile solutions and

recommend the appropriate mobile platform: HTML5, Native

(iOS/android/Windows Mobile), Hybrid solutions, or Salesforce1 Mobile App.

Prerequisite Setup Steps
N/A

Considerations

1. Who are the key actors (user groups)? What are their specific requirements?

2. What assumptions can be made or what requirements can be inferred from the

scenario? (For example, customer mobile development capability, security, offline

storage, and desired user experience.)

3. What does near 100% market penetration mean for the potential solution? What

platforms are the key players in the smartphone market, and what are their relative

market shares?

4. What are the relative strengths of the Mobile Architectures / Application patterns

(Mobile Web, Hybrid, Fully Native, Salesforce1)? How do their strengths apply to

each requirement?

Mobile Solutions Architecture Resource Guide 22

Solution

Best Solution Overview

Mobile Architecture Comparison

Get Started with Salesforce Mobile SDK in Trailhead will help you;

 Understand the various models (native, HTML, and hybrid) for Salesforce Mobile

SDK app development.

 Compare the relative advantages and disadvantages of each approach.

Solution Discussion:

Self-Service

 For customers, the recommended approach is to develop a hybrid mobile app using

the Salesforce Mobile SDK for Android and iOS platforms:
□ These two platforms dominate the smartphone market; therefore, maximum reach can

be achieved.

□ The app can be distributed to customers using Google Play / Apple App Store.

□ The hybrid solution enables UW to leverage most of HTML5 development across

platforms. The pages should be developed using a Responsive Web pattern, since it

maximizes re-use across different mobile form factors, including tablet and desktop.

□ The remaining market can be reached using a Mobile Web solution.

 As customers want to be able to receive updates on their service request, a solution

based on Salesforce Customer Communities is recommended.

https://trailhead.salesforce.com/en/modules/mobile_sdk_introduction/units/mobilesdk_intro_scenarios

Mobile Solutions Architecture Resource Guide 23

□ This provides maximum extensibility in the future (e.g., view invoices, pay bills, etc.).

□ The LDAP federated service can be set up as an authentication provider for Customers.

□ If a solution without customers having to authenticate is required, then it’s possible to

develop a Force.com Sites page (mobile Responsive) and allow customers to capture

their support cases via that page. If the customer provides their email, then notification

to the cases can be provided via email.

 iOS / Android frameworks provide the ability to extend the functionality to Apple

Watch / Android wear devices. These watch apps act as an "extension" of the phone

app.

 Location Sharing: This can be enabled using the HTML geolocation feature where

required.

 Uploading a Picture: The HTML media capture feature can be used in a hybrid or

web app to enable the user to choose a picture on their phone to upload or to take

a new picture.

 Alternatives:
□ Salesforce1: While Customer Community users can be enabled in Salesforce1, this is not

a great option to the mass market end users due to branding limitations and device

coverage (iOS and Android only).

□ Fully Native: The fully native option provides the best user experience. However, it comes

at a cost, as specialist skill sets are required to develop / maintain the app.

Sales Team:

 The Salesforce1 mobile app is the best solution for this user group.
□ Most of the functions they do on the road are simple form entry / data view.

□ They have all standardized on iPads.

□ The Salesforce1 app provides the ability to access reports and dashboards out-of-the-

box.

□ The Visualforce page for billing history / contracts can be mobile-enabled by ensuring it’s

responsive, and that the page is optimized for touch-based interaction.

□ The Salesforce1 mobile app provides limited offline access. For example, recent records

can be viewed in offline mode.

 Alternatives:
□ If there are more sophisticated off-line requirements, for example, the ability to create /

edit records, then a hybrid mobile solution based on Salesforce Mobile SDK might be

required. This will be a significant investment increase on the Salesforce1 mobile app.

Service Agents:

 The requirement to assign service requests based on the agent's proximity to the

account will require a Custom-built hybrid / native app based on the Salesforce

Mobile SDK:
□ This requirement implies a background process to periodically log the location of the

agent to Salesforce, or an alternate platform such as Heroku if very frequent logging of

the location is required.

□ A custom app is required to run a background process to enable this capability.

□ Alternative: If proximity-based routing is not a mandatory requirement, then a

http://www.w3schools.com/html/html5_geolocation.asp
https://www.w3.org/TR/html-media-capture/

Mobile Solutions Architecture Resource Guide 24

Salesforce1-based solution is a better fit for this user group (requires significantly less

investment).

 BYOD support / security requirements: To meet the security requirements, the

customer can adopt a Mobile Device Management (MDM) solution such as Mobile

Iron or Airwatch. Security policies can be set up so that administrators can remotely

wipe all data if a device is lost or stolen.
□ Some authentication providers can be enabled so that only devices enrolled in MDM can

authenticate.

□ MDM policies can also be set up requiring a minimum device PIN code length / periodic

expiry of PIN.

Service Providers:

 A solution based on Partner Communities is best suited for this user group:
□ Touch Id integration and branding requirements (assumed) would mean a hybrid

solution is best suited here.

□ The Touch Id integration can be enabled by using the appropriate iOS API

(KeychainTouchID class).

□ Service Request visibility requirement can be enabled using the Salesforce record sharing

capabilities; for example, Private OWD for cases. The REST APIs used by the mobile

solution will respect the user’s record visibility constraints set up in Salesforce.

 Alternative: If custom branding and Touch Id integration are mandatory

requirements, then a Salesforce1-based solution is a better fit for this user group. It

requires significantly less investment.

Other Considerations:

 Both Salesforce1 and Salesforce Mobile SDK apps can work with a SAML-based

authentication provider (federated authentication).
□ Leverage AD with ADFS for internal users.

□ A Federation Service (for example Ping) is required for the LDAP authentication store for

external users.

 Alternative: Provide a delegated authentication solution, but this is less desirable.

https://developer.salesforce.com/page/Single_Sign-On_with_SAML_on_Force.com

Mobile Solutions Architecture Resource Guide 25

2. Salesforce1 Mobile Solution

1.1 Describe the design considerations, trade-offs, and risks for mobile solutions and

recommend the appropriate mobile platform: HTML5, Native (iOS/android/Windows

Mobile), Hybrid solutions, or Salesforce1 Mobile App.

Opportunity Management

A key requirement for the UW Sales Team is for their reps to have easy access to their

opportunities from anywhere. These opportunities cover the various water products and

services they offer to the market.

The reps always struggle for time, and therefore need to find ways to quickly create and/or

update opportunities. The reps and, more importantly, their manager, also require the

ability to track the progress of their opportunities individually and overall as a team.

Before an opportunity closes and progresses into a contract, reps need the ability to review

its details even while on the road. This involves looking at a summarized view of the

opportunity, including all the products related to it.

Prerequisite Setup Steps

 It is a prerequisite to have completed the “Mobile Architecture Design” build

material.

 Access to a mobile device (smartphone or tablet).

Considerations

1. Who are your users? What are the key capabilities that they need access to on the

road?

2. What are the declarative features available in implementing a Salesforce1 mobile

app solution?

3. What are the various types of actions available for you to create declaratively in

Salesforce?

4. What is the difference between a Global Quick Action and an Object-Specific Quick

Action? When would you use one over the other?

5. What are the different approaches available in designing Visualforce pages for the

Salesforce1 mobile application?

Mobile Solutions Architecture Resource Guide 26

Solution

Best Solution Overview

Solution Description

Configure the Salesforce1 app to meet the needs of the Sales Team. Go through Mobile

Administration to manage navigation and other settings. Create a quick action and assign it

to an appropriate layout. Develop a Visualforce page that provides a summarized view of an

opportunity and all its products and display it on the Salesforce1 mobile app.

Solution Walkthrough

Manage Salesforce1 navigation through Mobile Administration. Improve productivity by

moving more frequently used items higher in the menu. The Sales Team at UW use Reports

a lot to track progress.

1. Adjust the order of Navigation Menu Items.

 Go to Setup > Administer > Mobile Administration and then go to Salesforce1

Navigation.

 Under the Selected panel, move Reports to be just above Dashboards using the

arrows.

 Click Save.

2. Create an Object-Specific Action.

The following steps take you through the creation of an object-specific action and how to

assign it to a layout to make it available in the Salesforce1 mobile app.

 Go to Setup | Build | Customize.

 In the object management settings for Opportunities, go to Buttons, Links, and

Actions.

 Click New Action.

 For Action Type, select Create a Record.

 For Target Object, select Opportunity Product.

 For Label, enter New Opportunity Product.

NOTE: Leave the Standard Label Type as None.

 Click Save.

Mobile Solutions Architecture Resource Guide 27

3. Assign the Action to a Page Layout.

 Navigate to the Page Layouts.

 Click Edit next to the Opportunity Layout.

 In the Salesforce1 and Lightning Experience Actions section, click override the

predefined actions.

 Click the Salesforce1 Actions category in the palette and then drag the new action

you created into the Salesforce1 and Lightning Experience Actions section.

 Click Save.

4. Develop a mobile-optimized Visualforce page.

To display data from Opportunity and Opportunity Product objects, create a Visualforce

page and make it available on the Salesforce1 mobile app.

The recommended approach is to use JavaScript Remoting and Static HTML. This provides

the best user experience, as it allows you to closely align the user interface to Salesforce1

while providing the most optimal performance.

 Install your preferred Salesforce Mobile Pack into your organization as a static

resource.

 Set your page’s docType to html-5.0. Strongly consider disabling the standard

stylesheets and header.

 Add scripts and styles from your chosen mobile toolkit to the page using Visualforce

resource tags.

 Use HTML5 and your mobile toolkit’s tags and attributes to create a page skeleton.

 Add JavaScript functions to the page as handlers to respond to user interaction. Use

JavaScript remoting to call Apex @RemoteAction methods that retrieve records,

perform DML, and so on.

 Add additional JavaScript functions to handle user actions and page updates.

Perform page updates by constructing HTML elements in JavaScript, and then

adding or appending them to the page skeleton.

For more information on how to develop a Visualforce page suitable for the Salesforce1

mobile app while taking into account the relevant limitations, refer to the Salesforce1

Mobile App Developer Guide, in particular the Development Guidelines and Best Practices

section.

Considerations / Solutions

1. Who are your users? What are the key capabilities that they need access to on the

road?

a. The users in this scenario are Sales Team members (reps, managers, etc.),

and they need to effectively manage opportunities and run

reports/dashboards.

https://developer.salesforce.com/mobile/services/mobile-packs
https://resources.docs.salesforce.com/sfdc/pdf/salesforce1_guide.pdf
https://resources.docs.salesforce.com/sfdc/pdf/salesforce1_guide.pdf

Mobile Solutions Architecture Resource Guide 28

2. What are the declarative features available in implementing a Salesforce1 mobile

app solution?

a. Mobile Navigation, Layouts, Actions, and Branding, plus enabling Offline and

Notifications.

3. What are the various types of actions available for you to create declaratively in

Salesforce?
□ Create actions let users create records.

□ Log a call actions let users record the details of phone calls or other customer

interactions.

□ Question actions enable users to ask and search for questions about the records

that they’re working with.

□ Send email actions, available only on Cases, give users access to a simplified version

of the Case Feed Email action on Salesforce1.

□ Update actions let users make changes to a record.

4. What is the difference between a Global Quick Action and an Object-Specific Quick

Action? When would you use one over the other?

a. Object-specific actions create records that are automatically associated with

related records.

5. What are the different approaches available in designing Visualforce pages for the

Salesforce1 mobile application?

a. The three (3) approaches available are:
o Standard Visualforce Pages

o Mixed Visualforce and HTML

o JavaScript Remoting and Static HTML

Standard Visualforce Pages would be the fastest to develop, but would have limitations

around the visual design and do not really cater to a mobile-optimized user experience

overall. Pages using Mixed Visualforce and HTML would be reasonably fast to develop and

allow the look and feel to be closer to Salesforce1 through the use of CSS stylesheets. This

approach, however, is still not fully optimal, since it follows Standard Visualforce in terms of

request-response cycles, controller functionalities, etc. Finally, JavaScript Remoting and

Static HTML provides the best in both user interface and performance, but takes the

longest time to develop.

Mobile Solutions Architecture Resource Guide 29

3. Lightning Development for Salesforce1

1.4 Recommend a mobile strategy, taking into consideration current Apex, Lightning

Component, and Visualforce assets and extension to Salesforce1 declarative capabilities.

Contract Management

A key requirement for the UW Sales Team is for their reps to create and submit new

contracts while they are on the road. As part of that process, there is a multi-step

Visualforce wizard which initiates a synchronous web service call to the ERP system on

contract submission.

Prerequisite Setup Steps

 It is a prerequisite to have gone through Scenario 1: Mobile Architecture Design.

 It is a prerequisite to have gone through Scenario 2: Salesforce1 Mobile Solution in

order to understand the declarative options available.

 Candidates should sign up for a Developer Edition (DE) or Practice org to use in

building up the solution.

 Access to a Mobile device (smartphone or tablet) or an emulator.

Considerations

1. In this scenario, we are taking existing custom functionality in Salesforce Classic and

porting it to Salesforce1. Mobile design and desktop design have major differences that

need to be taken into consideration:

a. Minimum Viable Product (MVP): What are the core elements of the wizard that

need to be accomplished in order for the contract submission to take place?

What we are looking for here is a redux of the existing functionality to its

essential pieces.

i. Can the number of fields be reduced?

ii. Can we reduce validation rules?

iii. Can we reduce pages?

b. b. A subset of MVP is Minimalist UX Design: As you design the pages in the

Wizard you have to account for the fact that you have limited real estate and

variable bandwidth. You have to design the page so it’s simple to use with figure

gestures and doesn’t require a lot of scrolling.

These considerations are an ideal. In most cases, you end up with trade-offs, but rarely do

you port a desktop design 1:1 to a mobile design.

https://developer.salesforce.com/signup

Mobile Solutions Architecture Resource Guide 30

2. Once you have a grasp of the basic design before moving to a custom solution in

Salesforce1, you should consider if you can piece together the various declarative

options available to achieve the design. A wizard in Visualforce on the desktop does not

need to look or feel exactly the same in a mobile environment, and should take into

consideration unique aspects of working on mobile devices as opposed to

laptops/desktops. Ask questions that can possibly reduce complexity. For example:

a. Could you use a publisher action to achieve the desired result?

b. Could you make the submission to the ERP system Asynchronous and use Process

Builder or Outbound Messaging to submit the request?

Try to go for the simplest solution that balances user experience, complexity, and

performance.

Mobile Solutions Architecture Resource Guide 31

Solution

Best Solution Overview

Customize the Salesforce1 app to meet the needs of the Sales Team by creating Lightning

Components that can be leveraged for the Wizard functionality.

By using the Lightning, we will also be leveraging the Lightning Design System, which is the

framework Salesforce uses to style its pages on all platforms: desktop and mobile. This will

keep the look consistent with what other pages in Salesforce1 look like. Additionally, when

you have the Lightning UI enabled on the desktop, the Mobile Wizard look and feel will be

consistent with that look and feel. In fact, you can use the Lightning Component you

develop here as a component in the desktop version, as well. The Lightning Design System

is also “responsive.” This means it will adapt to different form factors (i.e., iPad, Desktop,

iPhone) without having to create separate code or pages.

Solution Walkthrough

1. Determine the flow of the Wizard.

Assumption 1: We have done the work to minimize the wizard to what is absolutely

necessary and workable for a mobile environment.

Assumption 2: Currently Lightning Components cannot be hooked up into the Publisher

Action framework. For this reason, we will access the Wizard through the main left-hand

navigation as opposed to alternative options such as on an Opportunity Record.

Assumption 3: Lightning Components requires that your org has been set up with a custom

domain (My Domain feature).

Assumption 4: Lightning Components is enabled.

The Flow:

1. User will select Contract Wizard from the left-hand navigation in Salesforce1

2. User will see a single page wizard.

3. User will search for the Opportunity for which they would like to create a Contract.

4. User will fill out some basic information for the Contract.

5. User will hit Submit Contract.

6. A synchronous call will be made to the third-party system.

7. A fail or success message will be returned.

Mobile Solutions Architecture Resource Guide 32

What it’ll look like:

Figure 1: The Wizard

Mobile Solutions Architecture Resource Guide 33

 Figure 2: Searching for an Opportunity

Mobile Solutions Architecture Resource Guide 34

Figure 3: Date Picker to select the Contract End Date

2. Create the Lightning Component.

1. We will be utilizing the Developer Console to create our Component.

a. Click your name on the upper right-hand side to access the drop-down

menu.

b. Click Developer Console.

2. Create a Lightning Component.

a. Go to File | New | Lightning Component.

b. Name it ContractWizard.

Mobile Solutions Architecture Resource Guide 35

3. Create a Lightning App as a test bed for your component.

1. Create a Lightning Application to test the Component on the desktop for efficiency.

Lightning App is required to preview the component in a browser.

a. Open the Developer Console.

b. Click File | New | Lightning Application.

c. Name it OpptyContractWizard.app.

2. Add the following code:
1. <aura:application >
2. <div class="slds">
3. <ltng:require styles="/resource/sldsprod/assets/styles/salesforce-lightning-design-

system-vf.css" />
4. <c:ContractWizard />
5. </div>
6. </aura:application>

3. While you have the Lightning App window active, you will see a Preview button on

the upper right-hand side of the screen. You can click on this button to open a

browser to view the component you are building.

NOTE: Lightning Apps built in this way are not currently supported by

Salesforce1. We will install the Component directly to Saleforce1 when we

get to that step. Creating the Lightning App at this stage is just to facilitate

testing.

4. Create your Wizard Component: Creating the UI.

1. Go back to the component you created in Step 2.

2. On the right-hand panel, you’ll notice that you have the various components of a

Lightning Component. For this tutorial, we will be primarily interested in the

following:

a. Component

b. Controller

3. Make sure you are in the Component page (the title tab should end in .cmp) and

enter the following code:

1 <aura:component controller="OpptyContractWizardApexController" implements="force:appHostable">
2 <aura:attribute name="opptys" type="Opportunity[]"/>
3
4 <div class="slds-box slds-theme--inverse" role="banner">
5 <div class="slds-media">
6 <div class="slds-media__body">
7 <p class="slds-page-header__title slds-truncate slds-align-middle" title="Rohde Corp -

80,000 Widgets">Create Contract Wizard</p>
8 </div>
9 </div>
10 </div>
11
12
13 <div class="slds-m-top--medium"></div>
14 <h3 class="slds-section-title--divider">Step 1: Search for Opportunity</h3>
15 <div class="slds-m-top--medium"></div>

Mobile Solutions Architecture Resource Guide 36

16
17 <div class="slds-lookup" data-select="multi" data-scope="single" data-typeahead="true">
18 <div class="slds-form-element">
19 <div class="slds-form-element__control">
20 <div class="slds-form-element__control slds-input-has-icon slds-input-has-icon--

right">
21 <ui:inputText label="" aura:recordId="" aura:id="opptyName" aura:aria-

autocomplete="list" aura:role="combobox" aura:aria-expanded="true" aura:aria-
activedescendant="" placeholder="Opportunity Name" class="slds-input"/>

22 </div>
23 </div>
24
25 <div class="slds-m-top--small"></div>
26 <div class="slds-text-align--right">
27 <ui:button label="Search" press="{!c.searchOpptys}" class="slds-button--brand"/>
28 </div>
29
30 <div aura:id="opptyList" class="slds-lookup__menu slds-hide" aura:role="listbox">
31 <ul class="slds-lookup__list" aura:role="presentation">
32 <aura:iteration items="{!v.opptys}" var="oppty">
33 <li class="slds-lookup__item">
34
35 {!oppty.Name}
36
37
38
39
40 </aura:iteration>
41
42 </div>
43
44 </div>
45 </div>
46
47 <div class="slds-m-top--large"></div>
48 <h3 class="slds-section-title--divider">Step 2: Enter Contract Information</h3>
49 <div class="slds-m-top--medium"></div>
50
51 <div class="slds-form-element">
52 <div class="slds-form-element__control">
53 <ui:inputText label="Name:" aura:id="contractName" placeholder="Contract Name"

class="slds-input"/>
54 </div>
55 <div class="slds-m-top--medium"></div>
56 <div class="slds-form-element__control">
57 <ui:inputDate label="End Date:" aura:id="contractEndDate" class="slds-input"/>
58 </div>
59 </div>
60
61 <div class="slds-m-top--large"></div>
62 <h1 class="slds-section-title--divider">Step 3: Create Contract</h1>
63 <div class="slds-m-top--medium"></div>
64
65 <div class="slds-text-align--center">
66 <ui:button label="Create Contract" press="{!c.createContract}" class="slds-button--

brand"/>
67 </div>
68 <div class="slds-text-align--center">
69 <ui:outputText aura:id="createContractOutput" value=""/>
70
71 </div>
72
73
74 </aura:component>

Mobile Solutions Architecture Resource Guide 37

Let's break this down so we can understand it better:

1. All components start with the <aura:component> tag.

 To make this Component accessible to Salesforce1, we need to add to the tag

the implements=“force:appHostable” attribute/value.

 If we are accessing any server-side logic, we can specify the corresponding class

just like we do in a VisualForce page. In this case

controller=“OpptyContractWizardApexController.” We will use this class to get

the Opportunity records and create a Contract record later in the steps.

2. Another aspect of creating a Component is specifying attributes you will reference in

your page. Attributes are similar to variables. You use them to house values that you

can manipulate or display within the page. In our case, <aura:attribute

name="opptys" type="Opportunity[]"/> will hold a collection of Opportunities based

on the search term provided by the user. We will iterate this collection further down

in the page. More info: https://developer.salesforce.com/docs/atlas.en-

us.lightning.meta/lightning/components_attributes.htm

3. Next, we create our form to collect the information we need to create the contract.

 Visuals: We will be utilizing the Lightning Design System (LDS) to create the look

and feel for our page. As of the latest version of Lightning Components, you

don’t need to do anything additional to leverage LDS. It’s loaded as part of the

Framework. The structure of the HTML is governed by what is specified for the

various elements in the Lightning Design System site:

https://www.lightningdesignsystem.com/

 The Lightning Framework comes with UI elements that will help you save

time/effort. These tags begin with “ui.” We’re using:
□ ui:button

□ ui: inputText

□ ui: outputText

□ ui: inputDate

o Launches the calendar in iOS for easier data entry.

□ For a full listing of what elements are available and what types of functionality and

events they support, go to:

https://<myDomain>.lightning.force.com/auradocs/reference.app, where

<myDomain> is the name of your custom Salesforce domain.

 The Lightning Framework also allows you to do some basic conditional and

iterative logic to manipulate the presentation of the page similar to VisualForce.

In this case, we are using <aura:iteration /> to iterate through the attribute we

defined to house the collection of Opportunities returned to us by our search

query.

https://developer.salesforce.com/docs/atlas.en-us.lightning.meta/lightning/components_attributes.htm
https://developer.salesforce.com/docs/atlas.en-us.lightning.meta/lightning/components_attributes.htm
https://www.lightningdesignsystem.com/

Mobile Solutions Architecture Resource Guide 38

4. As mentioned earlier, we are taking our look and feel from LDS. For searching for the

Opportunity records, the user enters what they know of the Opportunity Name and

clicks search. When they click search, a drop-down appears with the search results.

When they click on a search result item, the item’s record id and name are recorded

and shown in the original Search Text box. The drop-down then disappears. To

achieve this effect, we need to dynamically show and hide the drop- down. The

Lightning Framework allows you to do this in a special way using the code below.

More on this when we discuss the controller logic.
□ $A.util.removeClass(divSearchList, ‘slds-show’);

□ $A.util.addClass(divSearchList, ‘slds-hide’);

5. Create your Wizard Component: Creating the Client-Side Controller Logic.

1. While you’re in the the Component page for your Component, double-click on

the Controller page on the right-hand panel to access the page where we will

write the Controller Logic.

2. Paste the following code into the Controller Page:
1 ({
2
3 "searchOpptys" : function(cmp) {
4 var action = cmp.get("c.findOppty");
5
6 action.setParams({ searchKey : cmp.find("opptyName").get("v.value") });
7
8 action.setCallback(this, function(response) {
9 var state = response.getState();
10
11 if (state === "SUCCESS") {
12 var divSearchList = cmp.find("opptyList");
13 $A.util.removeClass(divSearchList, 'slds-hide');
14 $A.util.addClass(divSearchList, 'slds-show');
15
16 cmp.set("v.opptys", response.getReturnValue());
17 }
18 else if (state === "INCOMPLETE") {
19 // do something
20 }
21 else if (state === "ERROR") {
22 var errors = response.getError();
23 if (errors) {
24 if (errors[0] && errors[0].message) {
25 console.log("Error message: " +
26 errors[0].message);
27 }
28 } else {
29 console.log("Unknown error");
30 }
31 }
32 });
33
34
35 $A.enqueueAction(action);
36 },
37
38 "selectOppty" : function(cmp, event) {
39

Mobile Solutions Architecture Resource Guide 39

40 var attributeValue = cmp.get("v.text");
41 var divSearchList = cmp.find("opptyList");
42 var opptyNameInput = cmp.find("opptyName");
43 var target;
44
45 opptyNameInput.set("v.value", event.target.innerHTML);
46 opptyNameInput.set("v.recordId", event.target.id);
47
48 $A.util.removeClass(divSearchList, 'slds-show');
49 $A.util.addClass(divSearchList, 'slds-hide');
50
51 },
52
53 "createContract" : function(cmp, event) {
54
55 var action = cmp.get("c.createContract");
56 var returnMsg = cmp.find("createContractOutput");
57
58
59 action.setParams({ OpportunityId : cmp.find("opptyName").get("v.recordId") });
60 action.setParams({ ContractName : cmp.find("contractName").get("v.value") });
61 action.setParams({ ContractEndDate : cmp.find("contractEndDate").get("v.value") });
62
63 action.setCallback(this, function(response) {
64 var state = response.getState();
65
66 if (state === "SUCCESS") {
67
68 returnMsg.set("v.value", response.getReturnValue());
69 }
70 else if (state === "INCOMPLETE") {
71 // do something
72 }
73 else if (state === "ERROR") {
74 var errors = response.getError();
75 if (errors) {
76 if (errors[0] && errors[0].message) {
77 console.log("Error message: " +
78 errors[0].message);
79 }
80 } else {
81 console.log("Unknown error");
82 }
83 }
84 });
85
86
87 $A.enqueueAction(action);
88
89 }
90 })

3. The controller page handles three functions for us:

a. searchOpptys - Will call the server-side controller class to fetch the search

results. The function is triggered on the press event of the Search button.

The code is pretty straightforward, so we won’t get into too much detail,

except for mentioning how you reference objects in the Component page:

i. Every function as a reference to the Component page. This is typically

passed in with the name “cmp.”

Mobile Solutions Architecture Resource Guide 40

ii. You use the find method to find an object on the Component page. For

example, if I want to find the inputText field with the id “opptyName,” I

would write cmp.find(“opptyName”).

iii. You get and set values using the get and set methods. You reference the

attribute within an Object using v.[attribute] notation. For example, to

get the label value for the opptyName inputText field, I would write

cmp.find(“opptyName”).get(“v.label”).

iv. You can define custom attributes, but make sure they have the aura:

prefix. For example, <ui:inputText aura:myCustomAttribute=”value”>.

v. You’ll also notice in this function that I’m modifying the style values for

the drop-down div to hide/show. Again this is done by using the

$A.util.removeClass and $A.util.addClass functions.

b. selectOppty - This function takes the value selected from the search drop-

down list and populates the Opportunity ID and Opportunity name to the

opptyName inputText field. Additionally, it calls the $A.util class functions to

hide the drop-down after a search item is selected. The Opportunity ID is

stored in a custom attributed (aura:recordId).

c. createContract - Calls the create contract method on the server-side

controller and passes the field values. Returns a success message upon the

completion of the call.

6. Create the Server-Side Controller.

1. Create a new class in the Developer Console:

 File | New | Apex Class.

 Call it OpptyContractWizardApexController.

2. Paste the following code:
1. public with sharing class OpptyContractWizardApexController {
2.
3. @AuraEnabled
4. public static List<Opportunity> findOppty(String searchKey)
5. {
6. String srchTerm = '%' + searchKey + '%';
7. return [select id, name FROM Opportunity where name LIKE :srchTerm LIMIT 5];
8.
9. }

10.
11. @AuraEnabled
12. public static String createContract(String OpportunityId, String ContractName, String

ContractEndDate)
13. {
14.
15. //Add logic to create contract and submit to ERP system.
16.
17. return 'Contract Successfully Created';
18. }
19. }

Mobile Solutions Architecture Resource Guide 41

Let's break this down again:

1. First things first - don’t forget about security. Use the “With Sharing” keywords if you

want to limit scope to what records users have access to.

2. Defining a server-side method class to be accessible to a Lightning Component:

a. Use the @AuraEnabled annotation above the method name.

b. Define the method as public static.

3. The rest is typical Apex coding we are all familiar with.

a. findOppty function: Gets a list of Opportunities based on the search term

entered on the form. I’ve limited it to just the top 5. You can add more, but

remember on mobile devices more is not better!

b. createContract function: I’ve left this function with just a placeholder as the

remaining work is typical Apex coding:

 Using the Opportunity record, you can get the additional information

required to create the Contract record, such as the Account ID.

 Once you have all the information, create the Contract record using

standard Apex Coding.

 You can make a synchronous call to the ERP system or handle it

through asynchronous methods, such as Outbound Messaging, to

deal with connectivity concerns if the ERP calls are costly.

7. Test the Component using the Lightning App Preview functionality.

1 Handy Tip: You can use Chrome Developer tools that come with the Chrome

Browser to better debug client-side Javascript and HTML coding issues.

8. Add it to Salesforce1.

1 Go to Setup | Customize | Create | Tabs.
□ Add the component we created in the Lightning Components Tab Section.

2 Go to Setup | Administer | Mobile Administration | Salesforce1 Navigation.
□ Add the Lightning Component Tab to the Salesforce1 Navigation.

9. Check it Out!

Considerations for Recommended Solution

The solution example demonstrates all the fundamental concepts of creating a Lightning

Component for Salesforce1:

1 How to create HTML and dynamic HTML.

2 Examples of how to leverage the Lightning Design System to make your UX work

faster / simpler.

3 How to handle client-side events.

4 How to do DML operations using server-side logic.

Mobile Solutions Architecture Resource Guide 42

When it comes to designing for mobile, performance is the most important factor in

usability, so getting the right balance between performance and creating a rich and

functional user experience should be the ultimate goal.

To expand on this example, there are some additional considerations not touched upon:

1 Error Handling:

a. We didn’t go into validation rules; however, when a record is created all the

validation rules set up in Salesforce will be enforced. The server-side method

should return the error message from the resulting DML operation attempt and

pass it to the Lightning Component so the user can view it. LDS has several

sections devoted to the right way to display error messages.

b. There is some debate on how much to do this pro-actively. The debate primarily

centers around how much complexity you build into the JavaScript code in

addition to all the stuff you’ve already configured on the server-side. The benefit

of doing it pro-actively is that it avoids user frustration as you can ideally do it at

the point of data entry. There's some low hanging fruit by taking advantage of

the Placeholder attribute, providing visual indicators for required fields, and help

text (check out the LDS for this as well). If you use the “ui” form element tags,

there is some built-in validation to make sure the user enters the expect text - for

example, date for the ui:inputTag element.

c. c. The remote call to the ERP should have some built-in logic if the call is taking

too long or fails. There are various integration patterns to handle this, such as

queuing, but beyond the scope of this tutorial.

2. Publisher Actions versus Lightning Components: One current limitation of Lightning

Components is that they cannot be tied to a Publisher Action when viewing a record

but, instead, must be accessed through the left-hand navigation. In this use case it

may be more ideal if a user can directly select from the Opportunity record the

ability to create a contract, as opposed to searching for the Opportunity in our

Wizard. As Visualforce is supported for Publisher Actions, a work-around for this

would be to create our Wizard in Visualforce. However, standard Visualforce coding

isn’t optimal for mobile situations given the inherent chattiness of Visualforce and

the additional payload heft created by the viewstate. To get around these issues,

there are mobile-optimized ways to create a Visualforce page using similar concepts

as Lightning Components, including using LDS. It’s beyond the scope of this tutorial

to get into these optimizations.

3. Is the UI we created the most optimal? There are many ways to create the UI by

mixing and matching various elements of the LDS. This is just one example. Try your

own out. For example, instead of creating a search button, I could create a button

within the text field itself!

Mobile Solutions Architecture Resource Guide 43

4. Lightning Component framework is right now rapidly iterating, as is the Lightning

Design System. There are many tweaks and changes. It may make sense given where

we are in the maturity cycle to limit the use of Lightning Components for only the

use cases where they make the most sense (i.e., you’re using Lightning on the

Desktop and want leverage the same component on the Desktop and Mobile) until

the framework stabilizes. As an interim measure, you could start converting your VF

pages to “mobile-optimized” VF pages using LDS. If done right, this could also be a

middle step before you have to completely convert your existing VF pages to

Lightning Components, as you should be able to leverage a lot of the client-side

code/HTML mark-up.

Mobile Solutions Architecture Resource Guide 44

Request a Practice Org

To request a Practice Org that contains information from some of the Build Materials,

please click here to open a case.

Select Question Type: Architect Support

Question Detail: Request Practice Org

ALERT: If you are not active within your practice org for 6 months, it may be

deactivated.

http://certification.salesforce.com/open-a-case

Mobile Solutions Architecture Resource Guide 45

Join the Salesforce Architect Success Group
 Want to make sure you don’t miss any content release updates or news regarding the

Salesforce Architect Journey?

 Looking to connect with others that have the same interest?

Click here and request to join the Salesforce Architect Success Group

https://success.salesforce.com/loginswitcher?startURL=%2F_ui%2Fcore%2Fchatter%2Fgroups%2FGroupProfilePage%3Fg%3D0F930000000blKv

